Chia sẻ Thư viện Đề thi & Kiểm tra

Đề thi thử Toán 9 năm 2019 trường THPT chuyên KHTN – Hà Nội (Vòng 2 – Đợt 4)

Đề thi thử Toán 9 năm 2019 trường THPT chuyên KHTN – Hà Nội (Vòng 2 – Đợt 4) gồm 1 trang với 4 bài toán dạng tự luận, học sinh làm bài trong khoảng thời gian 150 phút, kỳ thi nhằm giúp học sinh ôn tập để chuẩn bị cho kỳ thi Toán tuyển sinh vào lớp 10 THPT chuyên năm học 2019 – 2020.

Trích dẫn đề thi thử Toán 9 năm 2019 trường THPT chuyên KHTN – Hà Nội (Vòng 2 – Đợt 4):
+ Với a, b, c là các số thực dương thỏa mãn ab + bc + ca = 1. Tìm giá trị lớn nhất của biểu thức P = a/(1 + a^2) + b/(1 + b^2) – c/(1 + c^2).
[ads]
+ Cho tam giác ABC nhọn nội tiếp trong đường tròn (O). Tiếp tuyến qua B, C của (O) cắt nhau tại T. Đường thẳng qua T song song với OA cắt trung trực CA, AB lần lượt tại các điểm E, F.
1) Chứng minh rằng hai tam giác OEF và ABC đồng dạng.
2) Gọi J là tâm đường tròn ngoại tiếp tam giác OEF. Chứng minh rằng DJ || BC.
3) Gọi K là trực tâm tam giác OEF. Chứng minh rằng AT chia đôi đoạn thẳng OK.
+ Với x > 1, chứng minh rằng từ tập con A có n + 2 số của tập {1, 2, 3 … 3n} luôn có thể chọn ra 2 số mà hiệu của chúng lớn hơn n và nhỏ thua 2n.

5/5 - (378 votes)
Leave a comment