Chia sẻ Thư viện Đề thi & Kiểm tra

Sử dụng hai ẩn phụ đồng bậc giải phương trình chứa căn (ẩn phụ 4) – Lương Tuấn Đức

Tài liệu gồm 118 trang hướng dẫn phương pháp sử dụng hai ẩn phụ đồng bậc giải phương trình chứa căn (ẩn phụ 4), các bài toán đều được giải chi tiết, tài liệu được biên soạn bởi thầy Lương Tuấn Đức.

Nội dung tài liệu chủ yếu xoay quanh lớp các bài toán chứa căn thức được giải thông qua ý tưởng sử dụng hai ẩn phụ đưa về phương trình đồng bậc – đẳng cấp bậc hai cơ bản kết hợp phân tích nhân tử – phương trình tích. Kỹ năng này đồng hành cùng việc giải hệ phương trình hữu tỷ đồng bậc – đẳng cấp, hệ phương trình chứa căn quy về đẳng cấp, ngày một nâng cao kỹ năng giải phương trình – hệ phương trình cho các bạn học sinh.

Mức độ các bài toán đã nâng cao một chút, do đó độ khó đã tăng dần so với các phần trước (đã được chia sẻ trên Dethimau.edu.vn), đồng nghĩa đòi hỏi sự tư duy logic, nhạy bén kết hợp với vốn kiến thức nhất định của độc giả. Tài liệu nhỏ phù hợp với các bạn học sinh lớp 9 THCS ôn thi vào lớp 10 THPT đại trà, lớp 10 hệ THPT Chuyên, các bạn chuẩn bị bước vào các kỳ thi học sinh giỏi Toán các cấp và dự thi kỳ thi tuyển sinh Đại học – Cao đẳng môn Toán trên toàn quốc, cao hơn là tài liệu tham khảo dành cho các thầy cô giáo và các bạn trẻ yêu Toán khác.
[ads]
Các nội dung chủ đạo của tài liệu:
+ Sử dụng hai ẩn phụ đưa về phương trình đồng bậc – đẳng cấp.
+ Đặt hai ẩn phụ – phương trình đồng bậc bậc hai.
+ Đặt hai ẩn phụ – phân tích nhân tử.
+ Bài toán nhiều cách giải.

Kiến thức và kỹ năng cần chuẩn bị khi tìm hiểu tài liệu:
1. Nắm vững các phép biến đổi đại số cơ bản (nhân, chia đa thức, phân tích đa thức thành nhân tử, biến đổi phân thức đại số và căn thức).
2. Kỹ năng biến đổi tương đương, nâng lũy thừa, phân tích hằng đẳng thức, thêm bớt.
3. Nắm vững lý thuyết bất phương trình, dấu nhị thức bậc nhất, dấu tam thức bậc hai.
4. Nắm vững kiến thức về đa thức đồng bậc, các thao tác cơ bản với phương trình một ẩn phụ.
5. Bước đầu thực hành giải và biện luận các bài toán phương trình bậc hai, bậc cao với tham số.
6. Sử dụng thành thạo các ký hiệu logic trong phạm vi toán phổ thông.

5/5 - (307 votes)
Leave a comment