Tài liệu gồm 17 trang, hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề hệ thức lượng trong tam giác vuông, có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán; các bài toán trong tài liệu được trích từ các đề thi tuyển sinh lớp 10 môn Toán của các sở GD&ĐT và các trường THPT chuyên trên toàn quốc.
Hệ thức về cạnh và đường cao
Khi giải các bài toán liên quan đến cạnh và đường cao trong tam giác vuông, ngoài việc nắm vững các kiến thức về định lý Talet, về các trường hợp đồng dạng của tam giác, cần phải nắm vững các kiến thức sau: Tam giác ABC vuông tại A, đường cao AH. Chú ý: Diện tích tam giác vuông: 1 2 S ab.
Tỉ số lượng giác của góc nhọn
1. Các tỉ số lượng giác của góc nhọn (hình) được định nghĩa như sau: sin cos tan cot AB AC AB AC BC BC AC AB.
+ Nếu là một góc nhọn thì 0 sin 1 0 cos 1 tan 0 cot 0.
2. Với hai góc mà 0 90 ta có: sin cos cos sin tan cot cot tan. Nếu hai góc nhọn và có sin sin hoặc cos cos thì 3 2 2 sin cos 1 cot 1 tg g.
4. Với một số góc đặc biệt ta có: 0 0 0 0 1 2 sin 30 cos 60 sin 45 cos 45 2 2 0 0 0 0 3 1 cos 30 sin 60 cot60 tan 30 2 3 0 0 0 0 tan 45 cot 45 1 cot 30 tan 60 3.
Hệ thức về cạnh và góc trong tam giác vuông
1. Trong một tam giác vuông, mỗi cạnh góc vuông bằng:
a) Cạnh huyền nhân với sin góc đối hay nhân với cosin góc kề.
b) Cạnh góc vuông kia nhân với tan của góc đối hay nhân với cot của góc kề.
2. Giải tam giác vuông là tìm tất cả các cạnh và các góc chưa biết của tam giác vuông đó.
File WORD (dành cho quý thầy, cô): TẢI XUỐNG