Dethimau.edu.vn giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán cấp THPT vòng tỉnh năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Vĩnh Long; đề gồm hai bài thi: Sáng và Chiều; đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào ngày 08 tháng 01 năm 2023.
Trích dẫn Đề chọn học sinh giỏi Toán THPT vòng tỉnh năm 2022 – 2023 sở GD&ĐT Vĩnh Long:
+ Có 15 học sinh giỏi gồm 6 học sinh khối 12, 4 học sinh khối 11 và 5 học sinh khối 10. Hỏi có bao nhiêu cách chọn ra 6 học sinh sao cho mỗi khối có ít nhất 1 học sinh?
+ Cho hình chóp tứ giác đều S.ABCD tâm O có cạnh đáy bằng a, cạnh bên hợp với mặt đáy một góc 60°. Gọi M là điểm đối xứng của C qua D, N là trung điểm SC. a) Tính khoảng cách từ O đến mặt phẳng (SAD). b) Mặt phẳng (BMN) chia khối chóp S.ABCD thành hai phần. Tính tỉ số thể tích giữa hai phần (phần lớn trên phần bé).
+ Trong mặt phẳng với hệ tọa độ Oxy, cho điểm M(-3;1) và đường tròn (C): x2 + y2 − 2x − 6y + 6 = 0. Gọi T1, T2 là các tiếp điểm của các tiếp tuyến kẻ từ M đến (C). Tính khoảng cách từ O đến đường thẳng T1T2.