Dethimau.edu.vn giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi cấp trường môn Toán 10 năm học 2021 – 2022 trường THPT Võ Thành Trinh – An Giang; kỳ thi được diễn ra vào thứ Bảy ngày 05 tháng 03 năm 2022.
Trích dẫn đề chọn HSG Toán 10 năm 2021 – 2022 trường THPT Võ Thành Trinh – An Giang:
+ Cho phương trình 2×4 + (m + 1)x3 − 36×2 + 2(m + 1)x + 8 = 0 (1) với m là tham số thực. 1 Giải phương trình (1) với m = 2. 2 Tìm tất cả các giá trị của m để phương trình (1) có đúng 2 nghiệm thực.
+ Cho tam giác ABC có trọng tâm G. M là một điểm bất kỳ. 1 Chứng minh rằng MA · BC + MB · CA + MC · AB = 0. 2 Xác định vị trí của điểm M để biểu thức T = MA2 + MB2 + MC2 đạt giá trị nhỏ nhất.
+ Trong mặt phẳng tọa độ Oxy, cho điểm M(2; 1). Một đường thẳng đi qua điểm M cắt tia Ox, Oy theo thứ tự tại A(a; 0), B(0; b). Tìm giá trị nhỏ nhất của biểu thức 1OA2 + 1OB2.