Chiều Chủ Nhật ngày 04 tháng 10 năm 2020, trường THPT Thuận Thành 1, huyện Thuận Thành, tỉnh Bắc Ninh tổ chức kỳ thi khảo sát chất lượng đầu năm học môn Toán 12 năm học 2020 – 2021.
Đề KSCL Toán 12 đầu năm học 2020 – 2021 trường Thuận Thành 1 – Bắc Ninh gồm 05 trang với 50 câu hỏi và bài tập dạng trắc nghiệm, thời gian học sinh làm bài thi là 90 phút, nội dung đề thi tập trung vào các chương: ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số (Giải tích 12 chương 1), khối đa diện và thể tích của chúng (Hình học 12 chương 1) và các nội dung quan trọng khác thuộc chương trình Toán lớp 11; đề thi có đáp án mã đề 132.
Trích dẫn đề KSCL Toán 12 đầu năm học 2020 – 2021 trường Thuận Thành 1 – Bắc Ninh:
+ Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm các cạnh AB và AC, E là điểm trên cạnh CD với ED = 3EC. Thiết diện tạo bởi mặt phẳng (MNE) và tứ diện ABCD là:
A. Tam giác MNE. B. Tứ giác MNEF với F là điểm bất kì trên cạnh BD.
C. Hình bình hành MNEF với F là điểm trên cạnh BD mà EF // BC. D. Hình thang MNEF với F là điểm trên cạnh BD mà EF // BC.
+ Một cửa hàng bán bưởi Đoan Hùng của Phú Thọ với giá bán mỗi quả là 50.000 đồng. Với giá bán này thì cửa hàng chỉ bán được khoảng 40 quả bưởi. Cửa hàng này dự định giảm giá bán, ước tính nếu cửa hàng cứ giảm mỗi quả 5000 đồng thì số bưởi bán được tăng thêm là 50 quả. Xác định giá bán để cửa hàng đó thu được lợi nhuận lớn nhất, biết rằng giá nhập về ban đầu mỗi quả là 30.000 đồng.
+ Hai người ngang tài ngang sức tranh chức vô địch của cuộc thi cờ tướng. Người giành chiến thắng là người đầu tiên thắng được 5 ván cờ. Tại thời điểm người chơi thứ nhất đã thắng 4 ván và người chơi thứ hai mới thắng 2 ván, tính xác suất để người chơi thứ nhất giành chiến thắng?