Chia sẻ Thư viện Đề thi & Kiểm tra

Đề thi chọn HSG cấp tỉnh Toán 12 THPT năm 2018 – 2019 sở GD và ĐT Thừa Thiên Huế

Kỳ thi chọn HSG cấp tỉnh Toán 12 THPT năm 2018 – 2019 sở GD và ĐT Thừa Thiên Huế được diễn ra vào sáng ngày hôm qua (ngày 14/11/2018), đề gồm 1 trang với 6 bài toán tự luận, học sinh làm bài trong thời gian 180 phút, đề thi có lời giải chi tiết (lời giải được trình bày bởi tác giả N.V Sơn).

Trích dẫn đề thi chọn HSG cấp tỉnh Toán 12 THPT năm 2018 – 2019 sở GD và ĐT Thừa Thiên Huế:
+ Trong mặt phẳng tọa độ Oxy, cho đường thẳng Δ: 5x – 2y – 19 = 0 và đường tròn (C): x^2 + y^2 – 4x-2y = 0. Từ một điểm M nằm trên đường thẳng Δ kẻ hai tiếp tuyến MA, MB đến đường tròn (C) với A, B là hai tiếp điểm. Viết phương trình đường tròn ngoại tiếp tam giác AMB biết AB = √10.
[ads]
+ Cho tập A = {0;1;2;3;4;5;6}. Gọi S là tập hợp các số tự nhiên gồm 5 chữ số khác nhau được chọn từ các phần tử của tập A. Chọn ngẫu nhiên 1 số từ tập S. Tính xác suất để số được chọn chia hết cho 15.
+ Cho tam giác đều OAB có AB = a. Trên đường thẳng (d) đi qua O vuông góc với mặt phẳng (DAB) lấy một điểm M sao cho OM = x. Gọi E, F lần lượt là hình chiếu vuông góc của A lên MB và OB. Đường thẳng EF cắt đường thẳng (d) tại N. Chứng minh rằng AN vuông góc với BM. Xác định x theo a để thể tích khối tứ diện ABMN nhỏ nhất và tính giá trị nhỏ nhất đó.

5/5 - (419 votes)
Leave a comment