Chia sẻ Thư viện Đề thi & Kiểm tra

Đề thi HSG Toán 8 cấp huyện năm 2015 – 2016 phòng GD&ĐT Sông Lô – Vĩnh Phúc

THCS.Dethimau.edu.vn giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi HSG Toán 8 cấp huyện năm 2015 – 2016 phòng GD&ĐT Sông Lô – Vĩnh Phúc; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.

Trích dẫn đề thi HSG Toán 8 cấp huyện năm 2015 – 2016 phòng GD&ĐT Sông Lô – Vĩnh Phúc:
+ Trong bảng ô vuông kích thước 8×8 gồm 64 ô vuông đơn vị, người ta đánh dấu 13 ô bất kì. Chứng minh rằng với mọi cách đánh dấu luôn có ít nhất 4 ô được đánh dấu không có điểm chung (hai ô có điểm chung là 2 ô chung đỉnh hoặc chung cạnh).
+ Cho tam giác ABC đều cạnh 2a, M là trung điểm của BC. Góc xMy = 60 độ quay quanh đỉnh M cố định sao cho hai tia Mx, My cắt AB, AC lần lượt tại D và E. Chứng minh rằng:
a. Tam giác BDM đồng dạng với tam giác CME và tích BD.CE không phụ thuộc vào vị trí của xMy.
b. DM là phân giác của BDE.
c. BD.ME + CE.MD > a.DE.
d. Chu vi tam giác ADE không đổi khi xMy quay quanh M.
+ Cho biểu thức A.
a. Tìm điều kiện xác định và rút gọn biểu thức A.
b. Tìm x để A nhận giá trị là số âm.
c. Tìm giá trị nguyên của x để biểu thức (x + 2).A nhận giá trị là số nguyên.

5/5 - (322 votes)
Leave a comment