Ngày 26 tháng 05 năm 2019, trường THPT chuyên tỉnh Thái Bình tổ chức kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2019 – 2020, nhằm tuyển chọn các em học sinh vào các lớp 10 chuyên Toán – Tin để chuẩn bị cho năm học mới.
Đề Toán tuyển sinh lớp 10 năm 2019 – 2020 trường THPT chuyên Thái Bình (Vòng 2) gồm 5 bài toán dạng tự luận, thời gian làm bài 150 phút.
Trích dẫn đề Toán tuyển sinh lớp 10 năm 2019 – 2020 trường THPT chuyên Thái Bình (Vòng 2):
+ Trong mặt phẳng tọa độ Oxy, điểm M(a;b) được gọi là điểm nguyên nếu cả a và b đều là số nguyên. Chứng minh rằng tồn tại điểm I trong mặt phẳng tọa độ và 2019 số thực dương R1, R2 … R2019 sao cho có đúng k điểm nguyên nằm trong đường tròn (I;Rk) với mọi k là số nguyên dương không vượt quá 2019.
[ads]
+ Cho hình vuông ABCD nội tiếp đường tròn tâm O, bán kính R. Trên cung nhỏ AD lấy điểm E bất kì (E không trùng với A và D). Tia EB cắt các đường thẳng AD, AC lần lượt tại I và K. Tia EC cắt các đường thẳng DA, DB lần lượt tại M và N. Hai đường thẳng AN, DK cắt nhau tại P.
1. Chứng minh: Tứ giác EPND nội tiếp một đường tròn.
2. Chứng minh: góc EKM = góc DKM.
3. Khi M là trung điểm của AD, tính độ dài đoạn thẳng AE theo R.
+ Tìm các nghiệm nguyên (x;y) của phương trình √x + √y = √2020.