Chia sẻ Thư viện Đề thi & Kiểm tra

Lời giải bài toán bất đẳng thức, cực trị trong đề tuyển sinh lớp 10 môn Toán

Bài toán bất đẳng thức, cực trị (tìm giá trị lớn nhất – giá trị nhỏ nhất) luôn là bài toán khó nhất trong đề thi tuyển sinh vào lớp 10 môn Toán, đây là bài toán nhằm chọn lọc học sinh giỏi – xuất sắc môn Toán vào các lớp chuyên Toán tại các trường THPT chuyên.

Nhằm giúp các em học sinh lớp 9 có thể ôn tập bài toán bất đẳng thức và bài toán cực trị, THCS.Dethimau.edu.vn giới thiệu đến các em tài liệu lời giải bài toán bất đẳng thức, cực trị trong đề tuyển sinh lớp 10 môn Toán, tài liệu được tổng hợp bởi tác giả Trịnh Bình.

Trích dẫn nội dung tài liệu lời giải bài toán bất đẳng thức, cực trị trong đề tuyển sinh lớp 10 môn Toán:
+ Cho các số dương a, b, c dương thỏa mãn abc = a + b + c + 2. Tìm giá trị lớn nhất của biểu thức P = 1/√(a^2 + b^2) + 1/√(b^2 + c^2) + 1/√(c^2 + a^2) (TS10 / chuyên Phan Bội Châu – Nghệ An / 2019 – 2020).
+ Cho x, y, z là các số thực thuộc đoạn [0;2] thỏa mãn điều kiện: x + y + z = 3. a) Chứng minh rằng: x^2 + y^2 + z^2 < 6. b) Tìm giá trị lớn nhất của biểu thức: P = x^3 + y^3 + z^3 – 3xyz (TS10 / chuyên TP. Hồ Chí Minh / 2019 – 2020).
[ads]
+ Cho x, y, z là các số thực dương thỏa mãn: xy + yz + 4zx = 32. Tìm giá trị nhỏ nhất của biểu thức: P = x^2 + 16y^2 + 16z^2 (TS10 / chuyên Hòa Bình / 2019 – 2020).
+ Cho các số thực không âm a, b, c sao cho ab + bc + ca = 3 . Chứng minh rằng: 1/(a^2 + 2) + 1/(b^2 + 2) + 1/(c^2 + 2) ≤ 1 (TS10 / chuyên Phú Thọ / 2009 – 2010).
+ Giả sử x, y, z là những số thực thoả mãn điều kiện 0 ≤ x, y, z ≤ 2 và x + y + z = 3. Tìm giá trị nhỏ nhất và lớn nhất của biểu thức M = x^4 + y^4 + z^4 + 12(1 – x)(1 – y)(1 – z) (TS10 / chuyên KHTN – Hà Nội / 2009 – 2010).

5/5 - (331 votes)
Leave a comment